Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals?
نویسندگان
چکیده
Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.
منابع مشابه
Cry-wolf signals emerging from coevolutionary feedbacks in a tritrophic system.
For a communication system to be stable, senders should convey honest information. Providing dishonest information, however, can be advantageous to senders, which imposes a constraint on the evolution of communication systems. Beyond single populations and bitrophic systems, one may ask whether stable communication systems can evolve in multitrophic systems. Consider cross-species signalling wh...
متن کاملEffects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission.
Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both ...
متن کاملBehavioural and community ecology of plants that cry for help.
Plants respond to insect herbivory with the production of volatiles that attract carnivorous enemies of the herbivores, a phenomenon called indirect defence or 'plants crying for help'. Plants are under selection to maximize Darwinian fitness, and this can be done by making the right 'decisions' (i.e. by responding to environmental stress in ways that maximize seed production). Plant decisions ...
متن کاملIndole is an essential herbivore-induced volatile priming signal in maize
Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in ai...
متن کاملNew evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.
A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studi...
متن کامل